
Lecture 11 - Potential Problems
A Puzzle...

An infinite sheet lies in the x-y plane with uniform surface charge density σ. Define the potential to be 0 along the 

x-y plane. 

◼ What is the potential at all points in space? 

◼ Using this setup, explain why we cannot set the potential to be 0 at infinity when a charge distribution goes out 
to infinity?
Note: Because of this fact, we cannot use the formula ϕ = ∫

k ⅆq

r
 for infinite charge distributions.

Solution

1. By symmetry, the potential can only depend on z and not on x or y. For z > 0, the electric field is the constant 

value 

Eabove =
σ

2 ϵ0
z


(1)

Therefore, the electric potential at a distance z above the x-y plane equals

ϕ = -∫ E · ⅆs


= -∫0
z


σ

2 ϵ0
 ⅆz

= -
σ

2 ϵ0
z

(2)

where we have used the displacement vector ⅆ s

= z

ⅆ z. As expected, if σ > 0 then the electric field above the 

charged plane points in the z direction, and hence the potential decreases for larger z. By symmetry, the potential 

for z < 0 is given by ϕ = -
σ

2 ϵ0
(-z). More compactly, the potential everywhere is given by

ϕ = -
σ

2 ϵ0
z (3)

Notice that the potential is continuous, even though the electric field is discontinuous at the sheet of charge. This is 

because the electric potential is the integral over the electric field, and the line integral of a function does not 

change if finitely many points of that point are changed (although the derivative of ϕ is discontinuous when 

crossing the charged plane).

2. Now consider what the potential is at infinity. According to Equation (3), if we travel to infinity in either 

direction along the z-axis, we find limz→∞ϕ = -∞ (assuming σ > 0). On the other hand, if we stick to the x-y plane 

(z = 0) and go out to infinity in any direction, the potential is equal to 0. When the charge distribution is infinitely 

large, the potential at infinity is no longer unique. Therefore, we cannot assign infinity any self-consistent value, 

and so we have to pick another point as our reference point for potential. □ 

Work to Assemble Charge Distribution from Infinity
You are given a set of point charges q j with j = 1, 2 ... N with each point charge fixed in place. How much work 

does it take to assemble this charge distribution (starting from all of the charges being infinitely separated)?

The potential energy of two charges q j and qk separated by a distance r jk is k qj qk

rjk

, so the potential energy of the 

full charge distribution is given by
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U =
1
2 ∑j=1

N ∑k≠ j
k qj qk

rjk
(4)

where the factor of 1
2

 accounts for the fact that we considered each pair twice in our summation (and the k ≠ j 

notation means that you sum from k = 1 to k = N but skipping over k = j, since we do not want to count the poten-

tial energy of a point charge from itself).

Another way to calculate this quantity is to use the electric potential. Recall that the potential at a distance r from a 

point charge q equals k q

r
, so that if we define ϕ j as the potential at the location of the point charge q j from all of 

the other point charges (i.e. ϕ j =∑k≠ j
k qk

rjk

), then 

U =
1
2 ∑j=1

N ϕ j q j (5)

For a charge distribution ρ, this result generalizes to 

U =
1
2 ∫ ϕ ⅆq (6)

where we integrate over infinitesimal elements of a charge distribution, where each element has charge ⅆq. For 

3D charge distributions, this results in

U =
1
2 ∫ ϕ ρ ⅆv (7)

As a minor mathematical point, although technically we need to define ϕ here as the potential due to all of the 

charges except those at the point of integration, this altered definition of ϕ will not change the integral. For com-

pleteness, we can write the formula for sheets of charge

U =
1
2 ∫ ϕ σ ⅆa (8)

or lines of charge

U =
1
2 ∫ ϕ λ ⅆs (9)

Computing the Energy in a Charge Distribution

Note that we now have two distinct ways to compute the energy of a charge distribution, and we will use both in 

the following example. The first is to consider each bit of charge ⅆq being brought in from infinity to its appropri-

ate location, computing the work done on that charge (ϕ ⅆq) given the partial charge distribution already made, 

and summing over the entire process. Note that after we have constructed the charge distribution, no charges are 

moving...so where is the work used to make the charge distribution stored?

The answer is that the energy is stored in the electric field (or equivalently, in the electric potential). Therefore, a 

second method to determine the work required to create a charge distribution is to ignore the process of creating 

the distribution, but instead fast-forward to the already-complete charge distribution and analyze the electric field 

(or electric potential). Equation (6) tells us that the energy is given by 1
2 ∫ ϕ ⅆq. Alternatively, we could compute 

the energy by integrating over the electric field over all space ϵ0

2 ∫ E2 ⅆv (see Section 1.15 in the textbook).

Problems

Building a Spherical Shell of Charge

Example

How much work does it take to assemble a spherical shell of charge with radius R and a total charge Q spread 

evenly over the surface?

Solution

Recall that the electric field outside of a spherical shell with uniform charge distribution and total charge Q is 
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 spherical  charge  charge Q

identical to the electric field from a point charge Q at the center of the sphere, namely, E =
k Q

r2 r
. This implies that 

the potential outside the sphere (given by ϕ = -∫ E ·ⅆ s
) is also the same for both setups outside the spherical shell, 

namely ϕ = k Q

r
 for r > R. At the surface of the spherical shell, r = R and hence ϕ = k Q

R
. We will solve for the 

energy to build the sphere in several ways:

Method 1: Integrate over ϕ of the built sphere

Assume that the sphere has been assembled, so that its potential equals ϕ = k Q

R
 everywhere on its surface. We can 

directly apply Equation (6) to obtain the work required to assemble this spherical shell,

U =
1
2 ∫ ϕ ⅆq

=
1
2 ∫

k Q

R
ⅆq

=
k Q

2 R ∫ ⅆq

=
k Q2

2 R

(10)

Method 2: Integrate over E of the built sphere

We can similarly find the work of a charge distribution by integrating U =
ϵ0

2 ∫ E2 ⅆv across all space. Note that 

E = 0 inside the shell, so we only need to integrate outside the shell where E =
k Q

r2 r
 and E2 = E ·E =

k2 Q2

r4 . The full 

integral in spherical coordinates becomes

U =
ϵ0

2 ∫ E2 ⅆv

=
ϵ0

2 ∫0
2 π
∫0
π
∫0

R k2 Q2

r4 r2 Sin[θ] ⅆr ⅆθ ⅆϕ

=
ϵ0

2
k2 Q2 -

1
r

r=R

r=∞
(-Cos[θ])θ=0

θ=π (2 π)

= 2 π ϵ0
k2 Q2

R

=
k Q2

2 R

(11)

Method 3: Calculate the work required to bring every charge onto the sphere

Suppose our sphere is initially an uncharged spherical scaffold of radius R. We will bring in charge from infinity, 

bit by bit, and smear it evenly on the surface of the sphere until the total charge reaches Q. We will compute the 

work required to carry out this assembly process. 

Assume that at some intermediate stage, the sphere has charge q, and we want to bring in the next bit of charge 

ⅆq. The energy required to bring this ⅆq from infinity to the surface of the sphere is, by definition, ϕ[r = R] ⅆq 

where ϕ[r = R] =
k q

R
 is the potential at the surface of the sphere. Note that in bringing in this small bit of charge, 

we had to do work on ⅆq (since it is repelled by the sphere and we moved it in from infinity), but we did not do 

any work on the spherical shell since it staid in place.

Having brought ⅆq to the surface of the spherical shell, we now want to evenly smear that bit of charge out onto 

the surface of the sphere. Because the electric field lines point radially away from the spherical shell, moving 

perpendicularly to these field lines takes zero work, so we can smear out the charge evenly at no extra cost, 

increasing the total charge on the sphere to q + ⅆq. (Note that because the charge is infinitesimally small, we do 

not need to worry about the charge exerting force on itself during this smearing process, since all such forces will 

be of order (ⅆq)2 which is negligible.)

Therefore, the work required to build the entire sphere is given by
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U = ∫ ϕ ⅆq

= ∫0
Q k q

R
ⅆq

=
k

R ∫0
Q

q ⅆq

=
k Q2

2 R

as found above. □ 

As a fun aside, it is instructional to verify that the potential at the surface of the spherical shell is ϕ = k Q

R
 by direct 

integration. We center the spherical shell at the origin and using spherical coordinates to compute ϕ at the point 

(0, 0, R) on the z-axis. The distance r to an infinitesimal area element at coordinates (θ, ϕ) is given by the Law of 

Cosines as 

r = (R2 + R2 - 2 (R) (R) Cos[θ])1/2

= R (2- 2 Cos[θ])1/2

= R 2- 2 1- 2 Sin θ
2

2


1/2

= R 4 Sin θ
2

2

1/2

= 2 R Sin θ
2


(13)

Therefore, the potential at the top point of the spherical shell is given by

ϕ = ∫
k ⅆq

r

= ∫
k σ ⅆa

r

= ∫0
2 π
∫0
π k σ R2 Sin[θ] ⅆθ ⅆϕ

2 R Sin θ
2


= 2 π k σ R ∫0
π Sin[θ] ⅆθ

2 Sin θ
2


= 2 π k σ R ∫0
π 2 Sin θ

2
 Cos θ

2
 ⅆθ

2 Sin θ
2


= 2 π k σ R ∫0
πCos θ

2
 ⅆθ

= 2 π k σ R 2 Sin θ
2

θ=0

θ=π

= 4 π k σ R

=
k Q

R

(14)

where in the last step we used σ =
Q

4 π R2 . This integral may seem long, but the steps are all straightforward 

(provided that you remember your trig identities).

Dividing the Charge

Example

Consider two spheres, of radii R1 and R2, held so far apart from one another that each one negligibly feels the 

electric field from the other sphere. We want to divide a total amount of charge Q between the two spheres 

(assume the charge will be distributed evenly on each sphere). How should the charge be divided so as to make the 

potential energy of the resulting charge distribution as small as possible?

Solution

To answer this, we will first calculate the potential energy of the system for an arbitrary division of the charge, Q1 
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 potential energy  system  arbitrary  charge, Q

on one sphere and Q - Q1 on the other. Then minimize the energy as a function of Q1. Assume that any charge put 

on one of these spheres distributes itself uniformly over the surface of the sphere, the other sphere being far 

enough away so that its influence can be neglected. 

The energy from a sphere of radius R with charge Q1 uniformly spread over it equals 

Usphere =
1
2 ∫ ρ ϕ ⅆv =

1
2

Q1 
k Q1

R
 =

k Q1
2

2 R (15)

(Alternatively, we could have used the formula U =
ϵ0

2 ∫ E2 ⅆv where the integral covers all space. I invite you to 

verify that this yields the same answer.) Therefore, the total energy from putting charge Q1 on the sphere with 

radius R1 and Q - Q1 on the sphere with radius R2 equals

Utot =
k Q1

2

2 R1
+

k (Q-Q1)
2

2 R2
(16)

Differentiating with respect to Q1 and setting it equal to 0, 

0 =
ⅆUtot

ⅆQ1
=

k Q1

R1
-

k (Q-Q1)

R2
(17)

which yields

Q1 =
R1

R1+R2
Q (18)

Therefore, we place charge R1

R1+R2
Q on the sphere with radius R1 and R2

R1+R2
Q on the sphere with radius R2 to 

minimize their energy. For example, if we set R1 = R2, then we get the expected result that the charge will be 

equally distributed between the two spheres. 

Note that the second derivative ⅆ
2Utot

ⅆq2 =
k

R1
+

k

R2
> 0, which shows that this solution is indeed a local minima, and 

therefore a stable configuration.

Notice that the potentials on the surfaces of the two spheres are k Q1

R1
=

k Q

R1+R2
 and k (Q-Q1)

R2
=

k Q

R1+R2
, so the potential 

difference between the two spheres is zero. In other words, these two spheres could be connected by a wire, and 

there would still be no redistribution. This is a special example of a very general principle we shall meet in Chap-

ter 3: on a conductor, charge distributes itself so as to minimize the total potential energy of the system. □ 

Center vs. Corner of a Square

Example

A square sheet has side length L and uniform surface charge density σ. 

◼ Determine an integral expression for the potential ϕcenter of the square at its center and the potential ϕcorner at 
one of its corners

◼ Without explicitly computing the integrals for ϕcenter and ϕcorner, determine the ratio ϕcenter

ϕcorner

Solution

At the center of the square, we set up our coordinates as follows
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Out[ ]=

ⅆx
ⅆy

-2 -1 1 2

-2

-1

1

2

Therefore, the potential equals

ϕcenter = ∫
k ⅆq

r
= ∫-L/2

L/2
∫-L/2

L/2 k σ ⅆx ⅆy

x2+y2
1/2 (19)

On the other hand, if we want to compute the potential at the corner, we would setup our coordinates as follows 

(you could also setup an equivalent integral in any other corner and obtain the same answer)

Out[ ]=

ⅆx
ⅆy

-2 0 1 2

-2

0

1

2

Now the integral follows as

ϕcorner = ∫
k ⅆq

r
= ∫0

L
∫0

L k σ ⅆx ⅆy

x2+y2
1/2 (20)

These integrals are tough to compute, but we can nevertheless find ϕcenter

ϕcorner
, which we will do in three different ways. 

Method 1 (Geometry)

Consider a square with side length 2 L. The potential ϕcorner
(2 L)  at the center of this large square will be 4 ϕcorner

(L)  by the 

Principle of Superposition (since this charge configuration is equivalent to four squares of side length L put 

together). To find the potential at the corner, note that ϕcorner ∝
Q

L
 (since there are no other charges or length scales 

in the problem) and Q ∝σ L2 so that ϕcorner ∝ L. Therefore, ϕcorner
(2 L) = 2 ϕcorner

(L) , and so the ratio of the potential at the 

center to that at the corner equals ϕcenter
(2 L)

ϕcorner
(2 L)

=
4 ϕcorner

(L)

2 ϕcorner
(L)

= 2. Note that this is independent of L, so this result holds regard-

less of the side length of the square.

Method 2 (Algebra)

As an alternative (but equivalent argument), we can also relate the two integrals in Equations (19) and (17) above. 
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 (but equivalent argument),  integrals  Equations ( )  ( )

We begin by rewriting Equation (19) as 

ϕcenter = 4 ∫0
L/2
∫0

L/2 k σ ⅆx ⅆy

x2+y2
1/2 (21)

To bring Equation (17) to this same form, we define two new variables x = x

2
 and y = y

2
 so that 2 ⅆx


= ⅆx and 

2 ⅆy

= ⅆy. In terms of these new variables, x ∈ [0, L] and y ∈ [0, L] translate into x ∈ 0, L

2
 and y ∈ 0, L

2
. Thus 

we can rewrite Equation (17) as

ϕcorner = ∫0
L/2
∫0

L/2 k σ 2 ⅆx

 2 ⅆy




4 x
2
+4 y

2

1/2 = 2 ∫0

L/2
∫0

L/2 k σ ⅆx

ⅆy


x
2
+y
2

1/2 (22)

Therefore, ϕcenter = 2 ϕcorner.

Method 3 (Mathematica)

Of course, it never hurts to double check this answer using Mathematica to explicitly compute the integrals,

Integrate
k σ

x2 +y2

, {x, -L/2, L/2}, {y, -L/2, L/2}, Assumptions → L > 0

Integrate
k σ

x2 +y2

, {x, 0, L}, {y, 0, L}, Assumptions → L > 0

4 k L σ ArcSinh[1]

2 k L σ ArcSinh[1]

So once again we find that ϕcenter = 2 ϕcorner, as desired. □ 

Infinite Sheet - Cutoff Potential

Example

Consider the electric field E due to an infinite sheet with uniform surface charge density σ. We have already found 

E using Gauss’s Law. Find E again by calculating the potential and then taking the derivative.

You will find that the potential (relative to infinity) due to an infinite sheet diverges. So instead find the potential 

due to a very large but finite disk with radius R, at a point lying on the perpendicular line through the center. Use a 

Taylor series to simplify the potential, and then take the derivative to find E. Explain why this procedure is valid, 

even though it cuts off an infinite amount from the potential.

Solution

As was done in the book (Section 2.6), center the disk around the origin so that it lies in the x-z plane. 

Out[ ]=

The potential at a distance y along the perpendicular axis is found by breaking the circle into rings, 
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ϕ = ∫0
R k (2 π r ⅆr σ)

r2+y2
1/2 = 2 π σ k (r2 + y2)1/2

r=0
r=R

=
σ

2 ϵ0
(R2 + y2)1/2 - y (23)

The potential along the y-direction equals

Ey =
σ

2 ϵ0
1- y

R2+y2
1/2  (24)

Assuming y ≪ R, we can take the Taylor series to see what the electric field will look like from an infinite sheet,

Ey ≈
σ

2 ϵ0
1- y

R
+O

y

R

2
 =

σ

2 ϵ0
+O

y

R
 (25)

Mathematically, we are done, since in the limit R →∞ only this lowest order term will survive. To finish off the 

argument, we note that by the symmetry of the situation, the electric field must point away from the sheet of 

charge, so only Ey should be non-zero for any point in space. And this same argument could be applied to any 

point, so that Ey =
σ

2 ϵ0
 is the electric field from a sheet of charge.

You may be wondering why our cutoff assumption is valid, since we are neglecting an infinite amount of charge. 

The validity of this assumption rests on the fact that Equation (23) becomes ϕ ≈ σ

2 ϵ0
(R - y) for large R, which is 

linear in R and causes the potential to go to infinity as R →∞. However, the electric field - ∂ϕ

∂y
 does not change (in 

other words, the potential is increased as R increases, but it is increased uniformly at every point in space (that is 

the same thing as redefining the 0 point of gravitational potential energy to by 5 meters off the ground instead of at 

ground level; the potential energy of all particles will change, but none of the physics will change because only 

differences in potential energy matter)). □ 
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